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Abstract
We prove that for a Hamiltonian system on a cotangent bundle that is Liouville-
integrable and has monodromy the vector of Maslov indices is an eigenvector
of the monodromy matrix with eigenvalue 1. As a corollary, the resulting
restrictions on the monodromy matrix are derived.
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1. Introduction

The Liouville–Arnold theorem describes the local structure of an integrable system: for regular
values of the energy–momentum map F : T ∗M → R

n, the preimage of a regular value is
an n-torus (or a union of disconnected n-tori, but for simplicity we assume there is just one),
and there exist action-angle variables in a neighbourhood of this torus. Thus, locally phase
space has the structure of a trivial n-torus-bundle over an open neighbourhood of a regular
value in the image of F. Duistermaat [7] pointed out that globally the torus-bundle over the
regular values of F may be nontrivial. This phenomenon is called monodromy. As a result,
there may not exist global action-angle variables. In 2 degrees of freedom monodromy is well
understood [13, 19]. It is a common phenomenon because it occurs in a neighbourhood of an
equilibrium of focus–focus type. In 3 degrees of freedom now also many examples [17, 18,
8, 3] are known.

Quantization of a classical system with monodromy leads to quantum monodromy
[11, 16, 5, 14, 9]. The fact that the classical actions cannot be globally defined implies
that the quantum numbers suffer the same problem.

The Maslov index is not only interesting for semiclassical quantization, but also in
classical mechanics it is an invariant object defined for paths on Lagrangian submanifolds,
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e.g. on invariant tori, see [1, 12, 2]. Recently, it has been shown that the Maslov index is
related to the singular points of the energy–momentum map [10].

In this letter, we are going to show that if the vector of Maslov indices is non-zero, then
it is an eigenvector of the monodromy matrix with eigenvalue 1. This has some interesting
consequences for the structure of admissible monodromy matrices. Since the Maslov index
is only defined on cotangent bundles our results are only valid when the phase space is a
symplectic manifold of the form T ∗M .

2. Maslov indices

Let C be a closed curve in the set of regular values of the energy–momentum map. We take
C to be parametrized by 0 � s � 1. Let Ts denote the corresponding one-parameter family
of n-tori in phase space. Fix a basis of cycles γ0 for T0. By continuation this defines a basis
of cycles γs for every s. The curve C has monodromy when γ1 = Mγ0 for M ∈ SL(n, Z)

is nontrivial. More precisely, monodromy is a nontrivial automorphism of the first homology
group, and it implies that the preimage of C under F is a nontrivial n-torus-bundle over C. The
basis γs determines actions Is and Maslov indices µs on Ts . In fact, the Maslov indices are
independent of s, as they depend continuously on s and are integer-valued [15]. Let us denote
their common value by µ. Our main result is the following simple observation:

Theorem 1. If the vector of Maslov indices µ is not equal to zero, then µ is an eigenvector
of the monodromy matrix M with eigenvalue 1.

Proof. We have that µ1 = Mµ0 (just as I1 = MI0), since in general a change of basis cycles
γ ′ = Tγ , where T ∈ SL(n, Z), induces the transformation of Maslov indices µ′ = Tµ (and
the transformation of actions I ′ = TI ). Since µs = µ for all s, µ1 = Mµ0, i.e.

Mµ = µ. �

We remark that the Maslov indices µ, the actions I and the monodromy matrix M depend
on the initial choice of basis γ0. Under a change of basis γ ′

0 = Tγ0, where T ∈ SL(n, Z), we
have that µ′ = Tµ and M′ = TMT−1.

3. Monodromy matrices

From theorem 1, we immediately obtain the well-known result [13, 19] about the structure of
monodromy matrices in 2 degrees of freedom:

Corollary 2. For n = 2 degrees of freedom and a loop C with µ �= 0 there exists a basis of
cycles such that the monodromy matrix of C has the form

M =
(

1 m

0 1

)
.

Proof. Since M ∈ SL(2, Z) the eigenvalues λ1, λ2 must satisfy λ1λ2 = 1. But one eigenvalue
must be 1 by theorem 1, hence λ1 = λ2 = 1. Finally, a matrix in SL(2, Z) with a single
eigenvalue equal to 1 is conjugate to the stated form by some matrix from SL(2, Z). The
Maslov index in this basis is µ = (µ1, 0). �

Note that this does not give a complete classification of monodromy matrices on cotangent
bundles because we have assumed that µ �= 0. When µ �= 0, corollary 2 is quite strong because
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no assumption is needed on the type of singularity that is encircled by C, in particular the
usual non-degeneracy condition is not needed.

Corollary 2 is a special case of the simple general

Lemma 3. Suppose M ∈ SL(n, Z) has eigenvalue ±1. Then there exists T ∈ SL(n, Z) such
that M′ = TMT−1 has first column equal to ±e1 = (±1, 0, . . . , 0)t .

Proof. Let u denote an eigenvector of M with eigenvalue ±1, chosen so that its components
are coprime integers. Then one can construct a matrix S ∈ SL(n, Z) whose first column is u
(see, e.g., [4]). Let T = S−1 and M′ = TMT−1. It is easy to check that e1 is an eigenvector
of M′ with eigenvalue ±1, so that M′ has first column equal to ±e1. �

Using lemma 3 and again the fact that det M = 1 and λ1 = 1, we can obtain the
classification of monodromy matrices (for non-zero Maslov index) in n = 3 degrees of
freedom:

Corollary 4. For n = 3 degrees of freedom and a loop C with µ �= 0 there exists a basis of
cycles such that the monodromy matrix M of C has one of the following forms:

1 ∗ ∗
0 1 ∗
0 0 1


 ,


1 ∗ ∗

0 −1 ∗
0 0 −1


 ,

(
1 ∗
0 B

)
, (1)

where B ∈ SL(2, Z) has irrational eigenvalues and * denotes integers.

Proof. The eigenvalue 1 can appear with algebraic multiplicity ma = 1 or ma = 3 only;
ma = 2 is impossible because det M = λ1λ2λ3 = 1.4 The case ma = 3 corresponds to the
first form above. When ma = 1, the remaining eigenvalues are either both −1, corresponding
to the second form, or they are irrational, corresponding to the third. Other combinations
of eigenvalues are not possible, because rational eigenvalues of matrices in SL(n, Z) are
necessarily equal to ±1.

If the eigenvalues are all ±1 (corresponding to the first two forms), the matrices can be
made upper triangular by applying lemma 3 recursively, using a transformation of the form

Tn =
(

1 ∗
0 Tn−1

)
.

Matrices with two irrational eigenvalues cannot be made upper triangular in SL(n, Z) (as the
diagonal elements of a triangular matrix are its eigenvalues). �

It is interesting to consider how the entries denoted * in (1) can be normalized. In the
first form, the eigenvalue 1 has geometric multiplicity mg equal to 1 or 2 (i.e., there are either
one or two independent eigenvectors with eigenvalue 1). The normal form for mg = 2 has
been computed in [17]. The result is that only a single non-zero element remains above the
diagonal. Essentially this means that when mg = 2, the matrix can be block-diagonalized
in SL(3, Z). In the remaining cases in (1) a block-diagonal form is in general not possible:
conjugating a block triangular matrix with a block triangular matrix gives(

1 −dD−1

0 D−1

) (
1 a
0 A

)(
1 d
0 D

)
=

(
1 (a − dD−1(A − 1))D
0 D−1AD

)
.

Setting the upper right element of the right-hand side to zero and solving for d involves the
inverse of A − 1 which is in general not an integer matrix. Using a more general transformation

4 For general n the multiplicity cannot be n − 1.
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leads to the same condition. Thus for general a and A, the monodromy matrix cannot be block-
diagonalized. However, e.g., for the special matrix A = (2 1

1 1

)
(the ‘cat map’), it is always

possible since det(A − 1) = −1. If A − 1 is singular (corresponding to the first case in
corollary 4), the resulting Diophantine equation may or may not have a solution.

Our results need the condition µ �= 0. It may be possible to show that µ �= 0 necessarily
holds for certain configuration spaces M. We suspect, for example, that this is the case when
M = R

n, although we have not been able to prove this. Our result would then give the
complete classification of monodromy matrices on T ∗

R
n. In particular, the construction

of arbitrary monodromy matrices given in [6] would be impossible on these cotangent
bundles.

In 3 degrees of freedom, the known examples of monodromy are either of the first form
with mg = 2 [17, 18] or of the last form and block-diagonal. The last form of M is realized
for geodesic flows on Sol-manifolds, where an arbitrary hyperbolic B ∈ SL(2, Z) may
appear [3].

The main implication of the above is that when ma = 3 and mg = 2 there are always two
invariant actions, i.e. actions that do not change globally along the path C. Obviously, there
is always one invariant action, namely the one corresponding to the eigenvector e1, and when
mg = 1 it is the only one. With eigenvalues −1 there is at most one invariant action, but
another action is invariant when C is traversed twice. Hence, on a covering space this may
reduce to ma = 3 and mg = 2. It would be very interesting to find an example of this type.
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